
Journal of Global Optimization 8:15-34, 1996. 15
@ 1996 KluwerAcademic Publishers. Printed in the Netherlands.

Optimal Equi-Partition of Rectangular Domains for
Parallel Computation*

I O A N N I S T. C H R I S T O U and R O B E R T R. M E Y E R
Center for Parallel Optimization, Computer Sciences Department, Universi~. of Wisconsin,
Madison, Wisconsin 53706, U.S.A.

(Received: 7 March 1995; accepted: 5 August 1995)

Abstract. We present an efficient method for the partitioning of rectangular domains into equi-area
sub-domains of minimum total perimeter. For a variety of applications in parallel computation, this
corresponds to a load-balanced distribution of tasks that minimize interprocessor communication. Our
method is based on utilizing, to the maximum extent possible, a set of optimal shapes for sub-domains.
We prove that for a large class of these problems, we can construct solutions whose relative distance
from a computable lower bound converges to zero as the problem size tends to infinity. PERIX-GA,
a genetic algorithm employing this approach, has successfully solved to optimality million-variable
instances of the perimeter-minimization problem and for a one-billion-variable problem has generated
a solution within 0.32% of the lower bound. We report on the results of an implementation on a CM-5
supercomputer and make comparisons with other existing codes.

Key words: Graph partitioning, parallel computation, genetic algorithms.

1. The Minimum Perimeter Problem

We consider the M i n i m u m Perimeter Equi-parti t ion problem M P E (M , N , P) , a

geometr ic p rob lem with intrinsic beauty that finds numerous applications in parallel

comput ing. It is essentially a graph partit ioning problem that, when restricted to

rectangular grids (the main focus of this paper), can be stated as follows: given a
rectangular grid of d imensions M × N and a number of processors P , where P

divides M N , find the partition of the grid that minimizes the total per imeter induced
subject to the constraint that each processor is assigned the same number of grid

cells. Geometrical ly, the p rob lem may be thought of as partitioning the grid into P
equi-area regions (each of area A :-- M N / P) of min imum total perimeter.

Since graph parti t ioning is itself a special case of a more general problem,
the so-called Quadrat ic Ass ignment Problem (QAP), it follows that M P E can be
formula ted as a QAP [10]. In terms of binary variables in an integer p rog ramming
formulat ion [8] the p rob lem may be described using M N P variables and M N + P

'~ This research was partially funded by Air Force Office of Scientific Research grant F496-20-
94-1-0036 and National Science Foundation grants CDA-9024618 and CCR-9306807.

16 IOANNIS T. CHRISTOU AND ROBERT R. MEYER

constraints:

(1) rain
M

E
i , i /=1

M

E
i=1

s.t. P

E
p = l

N P

j , j '=l p,pl=l
p~p!

N M N
P ~ x i j - p p = 1 , . . . , P

j=l

P x l j = 1 i = 1 , . . . , M j = 1 , . . . , N

x p • ,3 E B = { O , 1}

{iif ,i-i',--1 and j = j '
where ciji,j, = if]j - j '] = 1 and ' = i'

else.

This formulation has an objective function that is the sum of quadratic terms
of boolean variables. At the expense of introducing more variables, and letting Z
denote the set of pairs of adjacent cells, we can reformulate the problem as a mixed
linear integer program:

(2)
M N

min ~ ~ ¢iji ' j '
i,i'=l j ,y=l

E MN
P

i=1 j = l
P

P = 1 s . t . E Xij
p = l

p p~
~)iji'j') Xij -[- Xi, j, -- 1

XP.. ~ 3 E B = { O , 1}.

p = 1 , . . . , P

i = l , . . . , M j = 1 , . . . , N

((i , j) , (i ' , j ')) E I , p e p ' = 1 , . . . , P

The above is a mixed integer program with 2 M N - M - N continuous and
M N P binary variables and P (P - 1)(2MN - m - N) + M N + P constraints.
We do not attempt to solve MPE(M, N, P) using this formulation; however, we
do report on comparisons between our approach and a GRASP heuristic algorithm
[5] for the QAE Exact Branch & Bound algorithms for the QAP that use GRASP
techniques to compute an initial upper bound are presented in [9].

The minimum perimeter problem has many applications in scientific comput-
ing in parallel systems, e.g. in the solution of PDEs where a partial differential
equation must be solved numerically on a grid. Such computations often require
communication between each cell and its North, South, East, and West neighbors

OPTIMAL EQUI-PARTITION

1

N=2v

Fig. 1. Optimal Partition for the MPE(1, N, 2).

17

(see [1]). Given a parallel/distributed computing environment, one is faced with the
task of assigning to each processing element a group of grid cells subject to load
balancing constraints (each processing element gets exactly the same number of
grid cells) so that total inter-processor communication is minimized. As the trend
in parallel computing is towards clusters of workstations where the communication
between processors can be very expensive, it is important that good solutions to the
minimum perimeter problem be provided. Another application is edge detection
in computer vision and digital image processing employing parallel computations
[11].

2. Optimal Shapes and Lower Bounds

As Yackel and Meyer have shown in [15], there exists a mapping L; from the set of
natural numbers to the set of all sets of configurations of grid cells such that every
natural number A is mapped onto a library of configurations called the optimal
shapes for A, where each shape that belongs to t2(A) has exactly A cells and its
perimeter is

(3) I~*(A) = 2~2~/A 1 .

The perimeter of these shapes is optimal, in the sense that there exists no con-
figuration of A cells having a total perimeter less than II*(A). Given an instance
MPE(M, N, P) with A = M N / P it follows that if any P shapes of £(A) can be
tiled together so as to completely cover the original domain (i.e. the whole M × N
grid), then the partition induced by these shapes is optimal. In any case, (3) yields
a lower bound PII*(A) on the objective value of our problem. Computational
experience shows that this lower bound is tight for many problems, but not tor all
instances. For example, consider the MPE(1, N, 2) with N even (shown in Figure
1); the optimal partition has a total perimeter equal to 4 (N / 2 + 1) while the lower
bound is 4 1 2 @ - ~ 1 . Clearly, the relative distance defined by the ratio of the dif-
ference of the solution minus the one predicted from the lower bound over the one
predicted grows as v/-N. This gap is due to the fact that the lower bound assumes
domains large enough in both dimensions so as to fit the relatively square optimal
shapes.

But the lower bound can fail to be attained even for square domains, as is the
case for the MPE(5, 5, 5), an optimal partition of which is shown in Figure 2.
However, for relatively square domains, we will show that the lower bound is good
in an asymptotic sense.

18 IOANNIS T. CHRISTOU AND ROBERT R. MEYER

Fig. 2. Optimal Partition for the MPE(5, 5, 5).

Many of the optimal shapes are rectangles with a "fringe" attached to one of their
sides [16], so they can be characterized by three numbers, namely the dimensions
of the rectangle h, w and the size of the fringe f . In general, the number of such
near-rectangular optimal shapes is of order A 1/4, but this does not encompass
all possible minimum perimeter configurations. There is a lot of literature (see
for example [6, 7]) dealing with the generating function approach for developing
expressions for the exact number of"convex polyominoes" with various properties.
However, our algorithm (described below) is based on a library comprised of near-
rectangular minimum perimeter configurations for a given area, so that the full
collection does not have to be counted or generated. Such a shape can be generated
using the following technique: start with a rectangle that has perimeter II* (A) and
area at least A. Iteratively remove comer cells of this rectangle until the area of
the remaining object is exactly A. The remaining object is an optimal shape for A.
It turns out that all the optimal shapes for a given area size A can be constructed
using this technique (see Yackel's PhD thesis [14]).

In much of the analysis below, rather than dealing directly with perimeter, it
is more convenient to use the concept of semi-perimeter. Given a group of A
connected cells, the semi-perimeter 8(9) of this group is defined to be the width
plus the height of the smallest rectangle enclosing the group. It is easy to show that
for all optimal shapes, perimeter is twice the semi-perimeter.

3. Error Bounds for Selected Classes of Domains

A key observation is that for many instances of the problem, a stripe-decomposition
of the domain is possible; that is, an optimal - or near optimal - partition exists,
where the sub-domains form horizontal stripes of height approximately v ~ that
partition the rows of the grid (observe the stripes of Figure 3). To establish this
claim, we are going to prove two lemmas; these two lemmas combined, guarantee
the existence of such solutions for a large class of instances of the perimeter
minimization problem.

OPTIMAL EQUI-PARTITION 19

Fig. 3. Optimal Partition for the MPE(122,122, 122).

L E M M A 1. Given two nonnega t ive integers m , k there exist natural number s a, b

such that

(4) rn = ak + b(k + 1)

i f f r ~ = 0 or

(5) k ~< d~ + r,~

where dm = ra + (k + l)

a n d r ~ = m mod(k + 1).
Proof. The case r ~ = 0 is trivial, so in the arguments below, we assume

r ~ > 0. From the definition of d~ and r ~ we have

rn = d m (k + 1) + r m.

But this can be written as

for any c. Now, we can write m in the desired form (4) if k divides r ~ + c and
0 <~ e ~< d~ . The smallest c that satisfies this requirement is k - r ~ , and thus, if
e = k - r ~ ~< d~ then s imply set b = d ~ - (k - r ~) a = [r ~ + (k + l) (k - r ~)] / k =

k + 1 - r ~ . For the other direction, observe that k - r ~ is the smallest c that al lows
k to divide the num ber r ~ + (k + 1)e so if this c is greater than d ~ , there exists
no natural such that the required decomposi t ion is possible. This concludes the
proof.

20 IOANNIS T. CHRISTOU AND ROBERT R. M E Y E R

A useful corollary of this lemma is the following:

C O R O L L A R Y 2. Given two nonnegative integers ra, k there exist natural numbers
a, b such that equation 4 holds if rn >i k(k - 1).

Proof The corollary trivially holds for k = 0 or k = 1. Assume therefore
k >/ 2. If k(k - 1) ~< ra ~< k 2 - - 1, then rn = k 2 - r for some r = 1 k, and
thus write m = (r - 1)k + (k - r)(k + 1). Else ra /> k 2. For all m between/c 2
a n d k (k + 1) - 1 we h a v e d ~ = k - 1 a n d r m >/ l, s o k <<. d~,~+ rm and the
claim holds. For all ra greater than or equal to k(k -4- 1) we have d,~. /> k and so
k ~< d~ + r ~ and the claim holds true again.

The next lemma states that the class of problems M P E (~ ~, N, N) is amenable
to such decomposition. In other words, for all N > 0, we can partition the rows of
the grid with a number of stripes, each of which has a height that is equal to the
height of an optimal shape from the library £ (N) .

L E M M A 3. Given N, we can always find r shapes (h~, wi, fi) - not necessarily
d is t inc t - f rom the library o f optimal shapes I£(N) such that

T

~-~h~= N.
i = 1

Proof. We are going to show that we can always find two optimal shapes
(hi , Wl, f l) and (h2, w2, f2) where fl < h l, f2 < h2, such that cthl + bh2 = N
for some natural numbers ct, b. Let k = [x /~J .

- Assume k(k + 1) > N. The discussion in Section 2 implies that (k, k, N - k 2)
is an optimal shape and its semi-perimeter is 2k + 1 (unless N = k 2 in which
case the semi-perimeter is 2k, and we can get a perfect partition using the
optimal shape (k, k, 0)). Furthermore, trying the rectangle (k + 1, k - 1) we
get

(k + l) C k - 1) = k 2 - 1 < X
and f = N - k 2 -4- 1 < k + 1 because N < k(k + 1) so the shape (k + 1, k -
1, N - k 2 + 1) is also an optimal shape. Both of these optimal shapes have
fringe size less than the height of the corresponding block. Since I\ 7 ~> k 2, by
Corollary 2 we can find two naturals a, b, such that N = ak + b(k + 1).

- Next assume that k(k + 1) = N. This simply means that the M P E (N , N, N)
has an optimal shape that is a rectangle and thus we can obtain a perfect
partition using N rectangles of dimensions k x (k -4- 1) all oriented in the
same way.

- Finally, assume k(k + 1) < N. Observe that (k + 1)2 > N from the definition
of k. Now, the shapes (k + 1, k, f) and (k, k + 1, f) where f = N - k (k + 1) <
k -4- 1 belong to £ (N) . Again, because N > k 2 Corollary 2 applies and the
required decomposit ion of the rows of the grid is possible. Note that if f = L~
the rectangle k × (k -4- 2) is an optimal shape, and a perfect partition using N
such rectangles all oriented the same way is possible. This ends the proof.

OPTIMAL EQUI-PARTITION

4 4

17
Fig. 4. Placement of the initial two shapes.

17

21

Lemma 3 proves that for the MPE(2V, 1¥, N) we can partition the rows of the grid
into r stripes of height h, where h is the height of an optimal shape for the problem.
Motivated by this fact, we present next a general stripe-filling process, which, given
an optimal shape (h, w, f) of area A and a stripe of height h and width A fills the
stripe with exactly h such shapes assigning them processor indices 1 h. We
first state this in the form of pseudo-code and then describe it in more detail.

stripe_fill(h,A:integer; vat str: grid)

/* input: h,A - the dimensions of the stripe

output: str - the processor index assignments of the cells

*/

begin

proc = I;

area[proc] = O;

for col = I to A

for row = I to h

str[row,col] = proc;

area[proc] = area[proc] + I

if (area[proc] = A)

proc = proc + I;

area[proc] = 0

endif

endfor

endfor

end;

The effect of this process 1S to place the block-part of the current optimal shape
so that its leftmost column occupies the first completely unassigned column of the

22 IOANNIS T. CHRISTOU AND ROBERT R. MEYER

stripe. If there exist any unassigned cells in column to the left of this column, the
method places as much of the fringe as possible there. If there is some part of the
fringe that does not fit there, the algorithm places this remainder in the immediate
right neighboring column of the block. However, if all fringe cells are assigned to
the left and there remain neighboring cells on the left that are not assigned, the
algorithm alters the shape by removing cells from the rightmost column of its block
and using them to fill the residual left neighbors of the block. Figure 4 illustrates the
placement of the first two shapes of a given input string for the MPE(17, t7, 17)
problem (grid dimensions are 17 × 17 to be partitioned among 17 processors)
within a stripe. Note that each of these shapes is a 4 × 4 rectangle accompanied by
a fringe cell. The second shape has been modified by the stripe-filling process, but
its total perimeter is still optimal (equal to 18).

By using the stripe-decomposition and stripe-filling results, we will show that
for large classes of MPEs, there exist solutions whose relative distance from the
theoretical lower bound converges to zero as the problem size tends to infinity.
One such class of problems is MPE(M, N, M) where M /> N. This error bound
behavior is a clear indication of the quality of the theoretical lower bound we are
using. The proof of the theorem is by construction, meaning that we present a fast
algorithm that computes such approximate solutions.

THEOREM 4. The MPE(N, N, N) problem (partition an N × N grid into N
components) has a solution whose relative distance g from the lower bound satisfies

1
(6) 6 <

[2v 7
Proof Let (hi, wi, fl) denote an optimal shape of height hi, width wi and fringe

size f/ for area size A = (N × N) / N = N from the library of optimal shapes
£ (N) , where f~ < h~.

As we have already shown in Lemma 3, we can always find r shapes - not
necessarily distinct - such that ~ = 1 hi = N. These numbers h l , . . . , hT induce a
partition on the rows of the grid (see Figure 5). The first hi rows of the grid are
called the first stripe, the following h2 rows are called the second stripe etc.

Now, each stripe, say stripe-i, can be filled with hi components using the shape
(h~, wi, fi). In order to do this simply use the "stripe-filling" algorithm described
earlier. In this manner, stripe-i is filled using exactly hi components, because the
area of the stripe is biN, and the total area of hi components is b i n also.

If fi = 0 then no error occurs in stripe-i. If fi > 0, the error in this stripe can be
no more than fi - 1. To see this observe that each shape is either optimally placed
(if it occupies wi + 1 columns of the stripe) or its semi-perimeter is suboptimal
by 1 (if the fringe part of the shape is split between the immediate left and right
columns of the block). So, we can measure the error in the stripe by counting
the number of the suboptimal shapes, or equivalently, by counting the "surplus"
columns corresponding to regions that occupy wi + 2 columns.

OPTIMAL EQUI-PARTITION

hli rJ I ~ L

MPE(N,N,N)

Fig. 5.

L

Stripe form of the partition.

23

In the stripe, assume there are e0 shapes that fill completely wi - 1 columns of
the stripe, and occupy part of their immediate left and right neighboring columns,
e + shapes that fill wi columns of the stripe and occupy part of one immediate
neighboring column, and ei shapes that are suboptimal, that is they fill wi columns
of the stripe, and they occupy part of both their immediate neighboring columns.
Thus, letting t denote the number of columns containing more than one component
index, we have

(7) e O + e ~ 4-ei = hi

(8) hiwi 4- fi = IV

(9) eo(wi - 1) 4- e~-wi + ciwi 4- t = N

from which, after substitution, we conclude that

t = f i+eo.

Let us now associate each of the t doubly indexed columns with the component
corresponding to the block to its left. Then the shapes corresponding to e0 each
contribute to t as do the ei suboptimal shapes and the first e + shape at the left
end of the stripe. Therefore, e0 + 1 4- ei ~< t. Combining this with the preceding
equation implies

ei ~ f i - 1

Therefore, the semi-perimeter error in each stripe is not more than fi - 1 and
the stripes cover the grid completely and with no overlap using a total of ~ = 1
hi = N components, so the relative error is bounded by

7"

1 ~ - ~ (f i - 1).

24 |OANNIS T. CHRISTOU AND ROBERT R. MEYER

Defining 7ri - (f i /h i) , ~r = maxi ~ri, we have ~ri e [0, 1),~r • [0, 1) so substituting
in the above we get

1
~ (f i - I) -

6 N[2 l i=1

7 c N - r 1

NI2{N-rl < //v'lv 2

as stated.

T

N[2] i----I

Before we generalize Theorem 4, it is worth focusing on it. The theorem shows
that the quality of the theoretical lower bound we are using must be very good as
there exist solutions whose total perimeter differs only "slightly" from the lower
bound as the problem size gets larger. Furthermore, the constructive proof we have
given implies a fast algorithm for constructing such good approximate solutions. In
fact, this technique is the basis of the PERIX algorithm that we describe in Section
4.

Note also that in the case when the fringe f i of an optimal shape (hi, tt-'i, f i)
divides its height hi exactly, then there can be no surplus columns and therefore
the error in a stripe using this shape is zero. The same zero error behavior of stripes
occurs when fi ~< 1. This implies that it is not unlikely in the best near-optimal
solutions to observe a large number of stripes of zero total error.

We now prove a generalized version of the theorem for the class of problems
M PE(M , N, M) where M >/ N.

THEOREM 5. The MPE(M, A T, M) with M) N has a sohttion whose total
perimeter possesses a relative distance ~ from the lower bound that satisfies

(lO) 5 < - -
F2v l '

Proof. The proof is very similar to the proof of Theorem 4. We are going to
partition the M rows of the grid into rl + r~ stripes having lengths h.j h,.t,
h .~ , . . . , h~2. The first rl stripes will be filled with optimal shapes (h~., wi, fl) while
the last r2 stripes will use sub-optimal shapes (h~, wi', f [) . These sub-optimal
shapes have an area size equal to N, but their semi-perimeter is $ (N) + 1 (off
by 1). The only case in which we use these shapes is when N is a perfect square
N = k 2. In this case, the sub-optimal shape we are going to use is the shape
(k + 1, k - 1, 1) which has an area of (k + 1)(k - 1) + 1 = 21 and a semi-perimeter
equal to 2k + 1.

Let k = L~N-J.
- Assume first k(k + 1) > N. Furthermore, assume N ¢ k 2. Under these

assumptions, the shapes (k, k, N - k 2) and (k + 1, k - 1, N - k 2 + 1) can be
used to partition the grid. Applying the technique described in the previous

OPTIMAL EQUI-PARTITION 25

theorem, in the i-th stripe we can place hi shapes, and the error in each of
them is

e i < ~ f i - 1 .

It only remains to prove that we can find nonnegative integers a, b such that

(11) M = ak + b(k + 1).

But since M) N /> k 2, from Corollary 2, we have that equation 11 holds.
Now, assume that N = k 2. In this case, the shape (k + 1, k - 1, 1) is suboptimal
by 1 as its semi-perimeter is 2k + 1. Nevertheless, the area size of this shape
is N , and we can use k + 1 shapes to fill a stripe of height h~ = k + 1. The
absolute error in such a stripe will be

ei = h~ = k + 1

where the term hi comes from the fact that each shape used in this stripe has a
semi-perimeter that is suboptimal by one. Note that since f s = 1, there exist
no surplus columns in such a stripe. From the discussion above, we have that
M = ak + b(k + 1) for some a, b E 1"~, so we can partition the rows of the
grid as desired. No w setting rl = a and r2 = b we have that the total relative
distance must be

1 r2

i=1

r2

i=1
we get

1

6 .< M [2,/-F1
- Next, assume that 2(= k(k + 1). This means that (k + 1, k, 0) and (k, k + 1,0)

are optimal rectangles. Since M >/ N /> k 2 by Corollary 2 we can always
write M = ak + b(k + 1) for some a, b E 1% Note that the error in each stripe
is zero, which results in a perfect partition.

- Finally, in the case N > k(k + 1), the shapes (k + 1, k, f) and (k, k + 1, f) are
optimal shapes for the M P E (M , N, M) . Note that f = N - k(k + 1), and if
f = k then the shape (k, k + 1, k) is really the optimal rectangle (k, k + 2, 0).
Using the same arguments again, we can partition the rows of the grid by
finding a, b E N such that M = ak + b(k + 1). The error in the i-th stripe will
be

ei <<, f i - 1 .
So we have shown that in all cases there exists a solution whose total perimeter

has a relative distance from the theoretical lower bound that is

7 g M - - T

M

and since

26 IOANNIS T. CHRISTOU AND ROBERT R. MEYER

M

Fig. 6.

M shapes M shapes

A A

MPE(M, N, P), P / > max(M, N).

M shapes

A

/1

I
i

I
i

l

2

m 1

l m2

for some rr C [0, 1) and r C N.

The next theorem, based on the previous discussions, asserts that there exist
solutions to the general MPE(M, N, P), whose relative distance from the lower
bound approaches zero as the problem size tends to infinity as long as the number
of components is big enough, i.e., P /> max(M, N).

THEOREM 6. If P >>, max(M, N) then the perimeter minimization problem
MPE(M, N, P) has a solution whose relative distance ~5 from the lower bound
satisfies

9
(12) ~5 < x / A l l "2 ~

and thus, the error bound ~5 converges to zero as A (the area of each component)
tends to infinity.

Proof The grid is shown in Figure 6. Write N = w A + d for some naturals w ~>
1 and d < A. Define/~ = Lv/AJ. Observe that the problem can be decomposed into
w MPE(M, A, M) problems, and a MPE(M, d, M d / A) . In each of the problems
MPE(M, A, M), use the techniques employed in the proof of the previous theorem
to get a total absolute perimeter error e < 2 w M . This striping technique (which
partitions the rows of the grid into r <~ M / k components hi, . . . , hr) is continued
over the last d columns in each stripe until no shape can be placed in this fashion.

The stripe decomposition for MPE(M, A, M) uses at most two different shapes.
Arrange the stripes of the grid so that all stripes that use the first shape are used in
the top rows of the grid which we will refer to as area 1, and all the stripes that use
the second shape are in the (remaining) bottom rows which we will refer to as area
2.

OPTIMAL EQUI-PARTITION 27

When this striping process ends, in area i, i = 1,2, there remain at most
li ~< k + 2 columns that contain unassigned grid cells (see Figure 6), and the first
such column, might have "slots" of empty cells in it. Use p~ shapes to fill these
slots (for the last of these shapes we might have to place part of it in the rest of
the free area). Each of these shapes will possess a perimeter no worse that 4A. The
number p ~ will satisfy (pS - 1)A < M.

To fill the remaining area we will use a "reverse-stripe-filling" algorithm: keep
filling the cells of this rightmost area of the grid with the remaining components,
one at a time row-wise: fill the n-th row before filling the (n + 1)-st row.

Let Pi denote the number of shapes that are placed completely in area i, and mi
the number of rows in area i that are used by these shapes. In the worst case, there
may exist one shape that has parts of it placed in both areas. Since we are interested
in upper bounding the relative error of the solution we construct, we will assume
the existence of such a shape (in any case, its perimeter may not be more than 4A).
Now, the number of shapes that were placed in the last d columns of the grid by
continuing the stripe-filling process are (M d / A) - p where p = Pl ÷P2 +pS+ 1. The
total perimeter error incurred by these shapes is no more than 2 ((M d / A) - p).

Now, from the above definitions it is clear that

piA <<. (li - 1)rai

and that ra I + rn 2 ~ M. In the worst case Ii > 1 (which means that in area i, there
exists at least one completely free column; otherwise, this area is completely filled
after the placement of the pS shapes, and Pi = 0). The perimeter of each shape
placed in an area i, can be upper bounded as follows; it takes at most IA/(l l - 1)1
rows to place it because [A/(l i - 1)](/i - 1) >/ A. Its perimeter therefore, is
2 ([A / (l i - 1)1 + l i - 1).

Thus, the maximum deviation from the perimeter bound is less than

/ 1) M d
2 w M + --A (Pl + P2 + +

2

÷ ~ _ ~ P i ([l i A - - _ l l ÷ l i - l - [2 v / - - A 1) ÷ (p ~ ÷ l) (2 A - [2 x / A 1)]
i=1

and therefore, the total relative distance 5 satisfies (since [2 v ~ l) 3 for all
A > I)

w M 2
~ i = , P i ([zg~-l] + li - 1 - 3) + 2A(p ~ + 1) + +

5 <
M [2 r# l

and from this we get

M (w A + d) + A 2 Ei---- lPi ([//A-~I l --1 ÷ I i -- 3) ÷ 2 A 2 (p S ÷ 1)
5 <

M(A + d)[2,/-Xl

28 IOANNIS T. CHRISTOU AND ROBERT R. MEYER

Taking into account that

Ap4(14 - 3) <~ (14 - 1)rni(Ii - 3) ~ (k ÷ 1)(k - 1)m~ ~< Ara4

and that

A p i (I l i - - ~] - 1) <<, A ~ <<,A (14-1)m4 14- 1 <~ miA

we conclude that

6 <
M(wA + d) + A 2 ~ i : l (m 4 + ra4) + 2AZ(M/A + 2)

M(wA + d) [2 v ~ l

and since A <~ wA + d and A ~< M, we get

9
(5 < - -

[2v/A-1

which ends the proof.

4. General Domains: The PERIX Algorithm

Based on the previous observations, we have developed PERIX, an algorithm that
accepts as input a (genetic) string of P optimal shapes and attempts to use them
to tile the grid with minimum shape modification. The procedure that follows is
similar to stripe-filling but more general.

To efficiently achieve this goal the PERIX algorithm maintains at each iteration
a list of maximum free rectangles (this is the same data structure employed success-
fully in the related minimum-diversity problem [14]). The elements of this list are
maximal rectangles in the grid having the property that no part of them intersects
an already placed shape. This list is sorted with primary key the y-coordinate of
the upper left comer in ascending order, and secondary key the x-coordinate of the
upper left comer in ascending order. At each iteration, the algorithm attempts to
place the block part of the optimal shape it's working with in the upper-leftmost
portion of the first free rectangle that fits in. If it can be placed within such a
rectangle, it checks to see whether the left neighboring cells relative to the block
are all occupied. If there exist cells that are not occupied then we put as much of
the fringe as possible there. Furthermore, if even after the placement of the fringe
to the immediate left of the block there still remain neighboring cells on that side
that are not assigned, we alter the shape by removing cells from the rightmost
column of its block and adding them to the remaining unoccupied left neighbours
of the block. In this case the resulting shape is still optimal as its perimeter has not
increased at all.

On the other hand, if after filling the unassigned left neighbor cells of the current
block, there still remains some part of the fringe that has not been placed yet, the

OPTIMAL EQUI-PARTITION 29

Fig. 7. An optimal solution for the MPE(17, 17, 17).

algorithm attempts to place this remainder in the immediate right neighboring
column of the block. In this case, the semi-perimeter of the current shape becomes
suboptimal by 1. When a stripe-decomposition of the domain is possible, this
represents the worst-case result for any shape. Otherwise, the placement of the
remainder of the fringe is postponed until all other shapes have been placed in the
grid.

In the case when attempts to insert the block part of a shape fail because there
exists no rectangle in the list of free rectangles big enough so as to accommodate
the current block, the block is split. The algorithm finds a free rectangle that can
accommodate as much of the current block as possible, and places this piece. Then,
it places the rest of the shape wherever possible while trying to limit the increase
of the perimeter that such splitting incurs.

Finally, after all the block-parts of the input shapes have been placed, the
algorithm places any remaining fringes from shapes whose fringe has not yet been
placed. Then, a swap phase follows where for a specified number of times, two
cells are picked from the grid and a test is performed to see whether swapping
them would actually reduce the perimeter. If swapping the two cells does not
increase the total perimeter, the swap is actually performed. In this phase, tabu-
like methods (see [2]) are employed: when swapping of two cells reduces total
perimeter, neither of the two cells is considered for swapping again for a certain
number of iterations (the hope is that the two cells were "properly" assigned). In
Figure 7 an optimal assignment for the MPE(17, 17, 17) problem is shown, with
total perimeter 171I*(17), produced by PERIX. Note that this solution is different
from one achieved by simply using a stripe-filling process.

30 IOANNIS T. CHRISTOU AND ROBERT R. MEYER

5. A Genetic Algorithm for the General Case

So far we have discussed how our heuristic, given a selection of optimal shapes,
seeks to minimize modification of those shapes. If for a certain problem
MPE(M, N, P) the library of optimal shapes £ (M N / P) contains s shapes, then
there are ~P different inputs for PERIX. To efficiently explore this huge space of
solutions, we have employed the Genetic Algorithm (GA) paradigm.

Our Genetic Algorithm breeds a number of individuals that represent points ill
the space of possible inputs to PERIX. Each individual is therefore a string of P
integers, each integer being an index to an optimal shape for the given problem.
PERIX acts upon each individual of the current generation, and computes the
perimeter that the individual produces. Then this perimeter is scaled to produce a
fitness value. Depending upon this value, each individual may or may not mate with
another individual to produce offspring. This is essentially the principle of natural
selection (advocated originally by C. Darwin, and applied much more recently in
many other contexts in [3]).

A specialized directed cross-over operator is used; each gene in the individual
has a tag associated with it, indicating whether the shape was placed in the beginning
of a new row in the grid or not. When two individuals mate, they exchange their
genetic material at points that are tagged as common beginnings of new rows for
both of them. If such points in the genetic string do not exist, the common cross-
over operator takes effect. The reason behind directed cross-over is the stripe form
of the approximate solutions that we have discussed. We have experimented with
one-point, two-point, and uniform cross-over, and have settled for one-point cross-
over as this operator usually produces the best solutions faster in the evolution
process.

Furthermore, the standard GA operator of mutation- changing some genes of the
genetic string with some small probability - was implemented, as was the inversion
operator [3], an operator that inverts part of the genetic string. This last operator
helped the diversity of the fitness values of the solutions as generations evolved.
The actual mating strategy we used is roulette-wheel-based, i.e. the probability that
an individual is chosen for mating is proportional to its fitness value.

Finally, we use a keep-incumbent and no-worse survival policy, where each
off-spring is compared with its parents (in terms of fitness function values); if the
best perimeter value of all the children in the current generation does not improve
on the incumbent value, then the children of parents with the incumbent value do
not survive and are replaced by their parents in the current generation. Also, if an
offspring is worse than the worst of all the individuals in the previous generation,
it is replaced by one of its parents. More details about these policies can be found
in [14].

Overall our GA performs remarkably well, solving extremely large instances
of MPEs. In the next section we present our results as well as some comparisons
with other codes.

OPTIMAL EQUI-PARTITION

TABLE I. Computat ional results.

31

PROBLEM Lower Bound GRASP PERIX-GA

M N P Err bnd(%) Time Err bnd(%) Gens Time

5 5 5 50 2.00* 18.2 2.00* 1 11.6

5 8 8 80 0.00 90.2 0.00 1 15.0

7 7 7 84 0.00 182.9 0.00 2 18.5

8 8 8 96 8.33 482.5 0.00 1 18.2

13 13 13 208 25.96 16357.6 0.00 11 385.0

17 17 17 306 - - 0.00 9 578.5

32 31 8 368 - - 2A7 2 358.4

32 31 32 768 - - 0.52 4 228.1

101 101 101 4242 - - 0.04 2 37.8

128 101 128 5376 - - 0.14 4 45.3

122 122 122 5612 - - 0.00 2 133.3

200 200 200 11600 - - 0.06 12 158.9

512 512 512 47104 - - 0.24 9 1339.1

1000 1000 1000 128000 - - 0.32 7 8330.0

6. Computational Results

We now present the results of our code and we make comparisons with a QAP code
that we used in order to solve our problems. We have tested our code extensively on
a very wide set of problems ranging from small problems to extremely large values
of M, N and P. The algorithm consistently produced very good approximate
solutions (and very often provably optimal ones).

We implemented our algorithm in C on a Thinking Machines CM-5 multipro-
cessor [12] with 2 partitions of 32 SPARC processors each. To co-ordinate the
processors we used the CMMD v.3.1 message passing library provided by Think-
ing Machines Inc [13]. The communication overhead of our Genetic Algorithm
is very low as the program spends less than 3% of total time in communications
between processors.

We have also tried to solve some of these problems using the GRASP code of
Li, Pardalos, and Resende [5]. This GRASP code for solving the QAP has been
implemented in FORTRAN 77 and we report on the results we got by running the
code on one node of the CM-5.

Note that Branch & Bound type algorithms incorporating a variance reduction
based lower bound (see [9]) for solving the QAP have been developed too. Also,
other GRASP codes that do not use Branch & Bound methods for the partitioning
of general graphs into two equal size sub-graphs were presented in [4].

The times shown in Table I are all in seconds. The times shown for the PERIX-
GA algorithm are averages of 5 runs on the CM-5. In all our experiments, we let
the PERIX-GA run for 20 generations. The colunm Gens indicates the number of

32 IOANNIS T. CHRISTOU AND ROBERT R. MEYER

TABLE II. Problem sizes under various formulations.

PROBLEM QAP MIP GA
M N P DIMENSION VARS CONSTR VARS

5 5 5 25 165 830 5
5 8 8 40 387 3800 8
7 7 7 49 427 3584 7
8 8 8 64 624 6344 8

13 13 13 169 2509 48854 13
17 17 17 289 5457 148274 17
32 31 8 992 9857 108576 8
32 31 32 992 33665 1906656 32

101 101 101 10201 1 0 5 0 5 0 1 204030302 101
128 101 128 12928 1 6 8 0 4 1 1 416605568 128
122 122 122 14884 1 8 4 5 3 7 2 435848294 122
200 200 200 40000 8079600 3.168E + 09 200
512 512 512 262144 1.347E+08 1.369E ÷ 11 512

1000 1000 1000 1,000,000 1.001E+09 1.996E+ 12 1000

generations it took the GA to find the best solution; this number is influenced by
the random number seed. Various choices of the seed sometimes force the GA to
go through many generations before it finds the best solution. The results shown
are produced by the best choice of the random number seed for each problem as
found by empirical testing. An asterisk in Table I indicates the fact that although
the best solution found differs f rom the one predicted by the lower bound, it is
nevertheless optimal.

To understand the performance of the GRASP code, it is important to realize
that the QAP formulation of the M P E (M , N, P) is of QAP dimension M N and
in terms of binary variables, one needs M N P 0 - 1 variables to formulate this
problem as a facility location problem. Table II shows the size of each problem
using a QAP, linear MIP, or a GA formulation. In the GA formulation, the size of
the problem is measured as the number of components that PERIX-GA must tile
together.

Exact codes for QAPs have solved problems of dimension up to 30, but in
general QAPs with dimension higher than 20 are considered large, difficult prob-
lems [10]. It should come as no surprise therefore that approaches which have no
knowledge of the geometric nature of the problem (and the form of the optimal
solutions) have difficulties with the larger problems in our test set.

7. Conclusions and Future Directions

We have presented PERIX-GA, an algorithm that solves the Minimum Perimeter
Equi-parti t ion problem M P E (M , N, P) on rectangular domains. This problem is a

OPTIMAL EQUI-PARTITION 33

special case of the Graph Partitioning Problem which is NP-complete. We develop
lower bounds using a theory of optimal tiles which states that for every instance of
the problem there is a set of optimal shapes associated with it, having the property
that if any P of them can be tiled together so as to completely cover the grid with no
overlap, then the resulting partition is optimal. This allows us to include knowledge
of the geometric aspect of the problem into our algorithm. We have proved that
for a large class of problems there exist approximate solutions that yield objective
values that differ from the theoretical lower bound only slightly as the problem size
gets larger, and that this error in fact tends to zero. We have provided a technique
for finding such solutions in polynomial time.

To efficiently explore the space of permutations of the input shapes, we have
incorporated a Genetic Algorithm which breeds generations of solutions in the hope
of finding an optimal selection. Genetic Algorithms are almost ideal candidates for
parallel implementations and so we implemented our algorithm on a CM-5. In all
our test problems the GA successfully found solutions having a distance from the
lower bound no more than 2.1%.

Future work involves implementing the algorithm on a local Cluster of Work-
stations (COW) and extending the algorithm to partition arbitrary non-rectangular
domains. We also plan to experiment with the possibility of replacing the swap
phase of the PERIX algorithm by a more sophisticated assignment phase. Final-
ly, we plan to investigate the possibility of extending our theoretical results on
error bounds to larger classes of Min imum Perimeter Problems by modifying our
construction technique or by examining new ones.

Acknowledgements

We wish to thank P.M. Pardalos, M. Resende and Y. Li for providing us with the
source code of their GRASP algorithm for the QAP.

References

1. R. DeLeone and M. A. Tork-Roth (1991), Massively parallel solution of quadratic programs via
successive overrelaxation. Technical Report 1041, University of Wisconsin-Madison.

2. E Glover and M. Laguna (1993), Tabu search. In C. R. Reeves, editor, Modern Heuristic
Techniques for Combinatorial Problems, pages 70-150. Blackwell Scientific Publications.

3. John Holland (1992), Adaptation in Natural and Artificial Systems. MIT Press.
4. M. Laguna, T. A. Feo, and H. C. Elrod (1994), A greedy randomized adaptive search procedure

for the two-partition problem. Operations Research.
5. Y. Li, P. M. Pardalos, and M. G. C. Resende (1993), A grasp for the qap. In P. M. Pardalos and

H. Wolkowicz, editors, Quadratic Assignment and Related Problems. DIMACS Series Vol. 16,
American Mathematical Society.

6. K. Y. Lin (1991), Exact solution of the convex polygon perimeter and area generating function.
J. Phys. A. Math. Gen. 24: 2411-2417.

7. M. Bousquet Melou (1994), Codage des polyominos convexes et equation pour l'enumeration
suivant l'aire. Discrete Applied Mathematics 48: 21~43.

8. G. Nemhauser and L. Wolsey (1985), Integer and Combinatorial Optimization. John Wiley &
Sons.

34 IOANNIS T. CHRISTOU AND ROBERT R. MEYER

9. R M. Pardalos, K. G. Ramakrishnan, M. G. C. Resende, and Y. Li (1995), Implementation of
a reduction based lower bound in a branch and bound algorithm for the quadratic assignment
problem. SIAM J. on Opt. (to appear).

10. R M. Pardalos, E Rendl, and H. Wolkowicz (1993), The quadratic assignment problem: A survey
and recent developments. In E M. Pardalos and H. Wolkowicz, editors, Quadratic Assignment
and Related Problems. American Mathematical Society.

11. R. J. Schalkoff (1989), Digital Image Processing and Computer Vision. John Wiley & Sons.
12. Thinking Machines Corporation (1991), The Connection Machine CM-5 Technical Summary.
13. Thinking Machines Corporation (1993), CMMD Reference Manual.
14. J. Yackel (1993), Minimum Perimeter Tiling in Parallel Computation. PhD thesis, University of

Wisconsin-Madison.
15. J. Yackel and R. R. Meyer (1992), Minimum perimeter decomposition. Technical Report 1078,

University of Wisconsin-Madison.
16. J. Yackel and R. R. Meyer (1992), Optimal tilings for parallel database design. In E M. Pardalos,

editor, Advances in Optim&ation and Parallel Computing, pages 293-309, North-Holland.

